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Abstract. U is shown that lk real exponential approach to the solutions of nonlinear evolution 
and wave equations can also be applied to discrete systems. As examples, the lanice solitary 
wave and Id& solutions of the discrete modified Kdv (DMKdV) equation and some modified 
versions of this equation are derived using this approach 

1. Introduction 

There are several standard methods of obtaining solitary wave solutions of nonlinear 
evolution and wave equations. Among them are direct integration (whenever possible), 
the inverse scattering method [l], the Backlund transformation [2,3], the Darboux 
transformation [4,5], the Hirota method [6], and the Fredholm determinant method [7]. 
Recently a real exponential approach to find the solitary wave solutions of nonlinear 
evolution and wave equations has been proposed by Korpel [8] and developed by Hereman 
et al [9]. Like the Hirota method, the real exponential approach is a direct method. Since 
the latter does not need to guess a dependent variable Innsfonnation, it is convenient to use 
it to derive solitary wave solutions of both integrable and non-integrable nonlinear evolution 
and wave equations. In fact, the real exponential approach has been employed to derive 
single solitary wave solutions of a large class of nonlinear evolution and wave equations 
successfully. A comprehensive list of these equations and solutions may be found in [9]. 

In the real exponential approach, the solution of a nonlinear equation is represented as 
a series in the real exponential solution of the linearized equation. The coefficients of the 
series satisfy a highly nonlinear recursion relation. If the nonlinear equation has a solitary 
wave solution, the series can be summed to anive at a closed form. Up to now the real 
exponential approach has been applied only to continuous nonlinear evolution and wave 
equations. In the present paper, we show that the real exponential approach can also be 
applied to discrete evolution and wave equations. We shall show this by considering the 
DMKdv equation and some modified versions of this equation. 

In section 2, the solitary wave and kink solutions of the DMKdV equation are derived 
using the real exponential approach. In section 3, the real exponential approach is 
generalized to find the solitary wave solutions of a d-dimensional version of the DMKdV 
equation. In section 4, a modified DMKdV equation is studied. Section 5 contains the 
conclusions. 
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2. The DMKdV equatiou 

The DMKdV equation has the form [IO] 

yi Xiuo and Wen-huu Hui 

bj = ( 4 j + l -  4j-i)~ +@ j = . . . , -2, -1.0, 1 ,2 , ,  . . (1) 

where the dot denotes the derivative with respect to time. In order to use the real exponential 
approach to derive the lattice solitary wave solutions of the DMKdV equation, we expand 4) 
as a series of the form [91 

where U. ar 2; are the expan n coefficients an 

gj = exp[-K(j - jo) +or)]  K > 0 (3) 

with j, being an integer and o a real quantity. For fixed time t, we can determine a value 
(io) of j from K ( j  - jo) - ot = 0. io may not be an integer. We expand 4j by using (20) 
when j z io and (2b) when j < io. If equations (2a) and (2b) have the same closed form, 
then we m've at a solution of equation (1). 

Substituting (2a) into (1) and equating the coefficients of gy. we obtain the nonlinear 
recursion relation for the coefficient a., 

[o + 2 sinh(K)lal = 0 

[zw + 2sinh(2K)]a2 = 0 

Cuse (i): 

(11 = arbitrary constant uz = 0. 

Under this condition, equation ( 4 4  leads to 

o+2s inh(K)=O or U = o / K  = -2sinh(K)/K (6) 

where U is the velocity of the lattice solitary wave. Then (4) has the non-hivial solution 

Uzp = 0 p = 1,2,3,. . . ( 7 4  

uzptl = i(-)PafP+1/[2sinh(K)]2P p = 0, 1,2,3, .  . .. (7b) 

Equation (727) can be proved as follows. First, it is easy to show that (74 holds. Then, 
using (7u) and assuming 

(8) UZD+l = c(-)Pa2P+' p = 0, 1 ,2. . . . 
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equation (4c) becomes 

cz = 4 s i n h 2 ( ~ )  (9) 

where we have used (AS) and (A6) from the appendix. It is clear that (9) holds when 
c = f2sinh(K). Let a = al/2sinh(K) and then (8) is identical to (7b). 

Thus we obtain 

@j = f2sinh(K)[gj/(l +$)I gj < 1 (10) 

C(-)nP+f =n/[ l  + X Z ]  1x1 < 1. (11) 

@j = &2sinh(~)[gj/(l +$I gj  > 1 (12) 

$1 = fsinh(K) sech[K(j - jo) - wr)] (13) 

where we have set al = f2sinh(K) and used the identity [ I l l  
CO 

n=O 

In a similar way we can obtain 

It is clear that (10) and (12) have the same form. Thus we finally obtain the solitary 
wave solution of (1) 

with 

0 = KlJ = -2sinh(K). 

It is noted that the DMKdV equation is integrable and has N-soliton solutions [lo]. 
Although the real exponential approach can also be used to find the N-soliton solutions 191, 
its main advantage is to derive the single solitary wave solutions. 

Case (ii): 

It can be shown that in this case the solution @j of (1) has the same form as (13) with (14) 
except that K is replaced by 2K and OJ by 240. 

a1 = 0 and a2 = arbimary constant 

Next, we consider another form of the DMKdV equation 

4j (@j+l- @j-t)(l- (15) 

Since this equation is related to (1) by the simple transformation @j -+ (-I)'/'@j, real 
solutions of (15) with vanishing boundary conditions can be found by considering the 
imaginary solution of (1) with vanishing boundary conditions. For example the cosech 
solution to (15) can be obtained from the sech solution to (1) by adding a phase shift of 
in/2. 

However our interest here is in finding the solitary wave solutions with non-vanishing 
boundary conditions. It is known that the continuous limit of (15) has solutions with non- 
vanishing boundary conditions [13]. To look for this kind of solution to (15). we expand 
@j by 
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Substituting (16a) into (15) and equating the coefficients of g!, we obtain the recursion 
relation for a,,, 

E Xiao and Wen-hau Hai 

a1 = arbitrary constant (174 

a2 = aoaf/[(l - a i ) ~ s i n h ~ ( ~ / ~ ) l  

(1 - a ; ~ s i n h ( n ~ )  - nsinh(~)la,  = ~ n ,  Csinh(mK)a,a.-, 

(176) 
"-1 

m=l 

m=2 I=1 

where we have taken 

w =  -2(1 -&sinh(K). 

The solution a, of (17) can be written as 

an = f a ; / [ ~ t a n h ( ~ / ~ ) ] " - '  (n = 1.2.3,. . .). (19) 
This can be proved as follows. For n = 2, equation (19) is the same as (176) with 
a0 = &tanh(K/Z). For n > 3, assuming an = ca", equation (17c) becomes 

(20) 

(21) 
It is easy to show that (21) holds for n > 3 when q = rttanh(K/Z). Substituting (21) into 
(16~). we find 

4j = &tanh(K/Z) tanh[K(j - jo - ut ) /2 ]  (22) 

4j = &tanh(K/Z)coth[K(j - jo - ut)/2] (Zb) 

@ j = i t a u h ( K / Z ) t a n h [ K ( j -  jo-uz)/21 (gj 1) (234 

4j = +tanh(K/Z)coth[K(j - jo - ut)/2] (236) 

41 = i tanh(K/Z) tanh[K( j  - jo - ut)/2] (2.1) 

4j = f tanh(K/Z)coth[K( j  - jo  - ut) /2]  (25) 

U = -2sinh(K)tanh(K)/K. (26) 

Taking c = 2uo and using the identity (A3) from the appendix, we obtain 

(1 - U ; )  = -hz/[l -cosh(K)l. 

( g j  4 1) 

(gj < 1). 

Or 

In a similar way, we obtain for gj > 1 

or 

(gj > 1). 
From equations (22) and (23). we find the following possible solutions to (15) 

with 

The solution (24) is a kink solution and (25) is a singular solution of equation (15). 
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3. A d-dimensional DMKdV equation 

The real exponential approach can be generalized to derive the solitary wave solutions of 
some d-dimensional discrete nonlinear evolution and wave equations. As an example, we 
consider a d-dimensional version of the DMKdV equation [ 121 

d 

$0’) = B.W + e,) - #G - eU)1[1 (27) 
U.=1 

where j = 0’1, j z ,  . . . , j d )  is a vector with its cuth element being an integer j ,  and e, is 
the unit vector in the direction of the ath axis of a simple cubic lattice. 

To find the solitary wave solution of (U), we need only to replace gj in (2) by 

g ( j ) = e x p [ - ( K . ( j - j o ) - w t ) ]  K = ( K , K , . . . , K )  K > O  (28) 

with jo being a constant vector. Then it is easy to show that the solitary wave solution of 
(27) is 

40’) = f sinh(K) sech[K - jo) - ut)] (29) 

with 

d 

w = -2Bsinh(K) B 
a=l 

Similarly the solitary wave solutions of the equation 

d 

a=l 
$0’) = ~ $ 0 ’  +ea) - $0’ - eu)l[1 - + c ~ ) ~ I  

can be found to be 

$U) = f t ( K / 2 ) t a n h [ ( K . C i - j o ) - w t ) / 2 ]  

$0’) = f tanh(K/2) cOth[(K * 0’ - j o )  - ~ t ) / 2 ]  

with 

o = -2B ~ i n h ( K )  tanh(K). 

4. A modified DMKdV equation 

(34) 

In this section we consider a modified DMKdV equation and its d-dimensional version. This 
modified DMKdV equation is written as [12] 

4j = ($jtl -#j-1)(1 t 4jY. (35) 
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Substituting (2a) into (35). we obtain the recursion relation 

[w + Zsinh(K)lal = 0 

[2w + 2sinh(2K)]a2 = - 4 4  sinh(K) 

Yi Xiao Md Wen-huu Hai 

The solution of (36) is found to be 

U. = (-)"-'na;/4sinh2(K/2)]"-' (37) 

with 

o = -2sinh(K) a1 =arbitrary constant. (38) 

This can be proved as follows. For n = 2 it is shown that (36b) is the same as (37). For 
n > 3, using (38) and taking a, = cna", equation (36c) becomes 

0-1 m-1 

+ z c  l (m - l)(n - m)sinh(lK). 
m=2 I=I 

(39) 

Using (A7) and (A8). we can prove the following identity 

= - [n(l - cosh(K)) sinh(nK) + sinh(K)(cosh(nK) - 1)]/[2(1 - cosh(k))']. 

(40) 

Using (40), we find that (39) holds when c = 2[1 - cosh(K)] = -4sinh2(K/2). Let 
a = al/[-4sinhZ(K/2)] and then we anive at equation (37). 

In a similar way, we can find U; for gj > 1. Then the solitary wave solution of (35) is 
found to be 

$j = sinhz(C) sechz[C(j - j o )  - or] (41) 

o = - sinh(2C) (42) 

with 

where C = K/2.  To ensure (2a) and (2b) have the same closed fonn, we have set 
al = 4sinhz(C). 
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5. Conclusions 

In this paper we have applied the real exponential approach to discrete nonlinear wave 
equations. We have obtained the solitary wave and kink solutions of the DMKdV equation 
and its modified versions. We have also shown that the real exponential approach can be 
applied to the d-dimensional version of the DMKdV equation. Compared with continuous 
cases, the nonlinear recursion relation of discrete cases always include hyperbolic functions 
and so it is more difficult to find solutions of the expansion coefficients. Fortunately, when 
the discrete equation has solitary wave solutions of simple shapes (e.g., sech, tanh and so 
on), these solutions can also be obtained easily. In the following papers we shall apply the 
real exponential approach to other integrable and non-integrable discrete wave equations. 
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Appendix 

In this appendix, we derive some identities used in the text. In [ 1 I] we find the following 
identities: 

n-1 

p"' sinh(mx) = [psinh(x) - p" sinh(nx) + pnt' sinh(n - l)x]/[l - Zpcosh(x) + pzl 

(AI) 

~ p " c o s h ( m )  = [1-pcosh(x)-p"cosh(n)+p"+'cosh(n-I)x] / [ l -2pcosh(x)+p2] .  

(U) 

m=1 

"-1 

m=O 

When p = +l,  equations (AI) and (A2) become 

2 .  smh(mx) = [sinh(x) - sinh(nx) + sinh(n - I)x]/[Z(l - cosh(x))] (A3) 
m=l 

%cosh(mx) = [l - cosh(x) - cosh(nx) + cosh(n - 1)x]/[2(1 - cosh(x))] (A41 
m=O 

respectively. 
Subtracting (AI) with p = + I  from (Al) with p = -1, we obtain 

2 sinh(2s + 1)x = Lcosh(2qx) - 1]/[2 sinh(x)] 
S=l 
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and adding (A2) with p = + I  and with p = -1  leads to 

E Xiao and Wen-hau Hai 

Finally, the first differentiation of (AI)  with respect to p for p = +1 leads to 

C m  sinh(mx) = [n sinh(n - I)x - (n - 1)  sinh(nx)J/[2(1 - cosh(x))] 
m=l 

and the second differentiation of (Al) with respect to p for p = f l  leads to 

.-I 

"-1 
xm2sinh(mx)  = [n sinh(n - 1)x - (n2 - Zn)sinh(nx)]/[2(1 - cosh(x))] 
m=1 

+ sinh(x)[cosh(nx) - 11/[2(1 - cosh(x))*]. 
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